Algebra 2

Chapter 12 Review

Hour:

Find the indicated trig ratios. Write your answer as a simplified fraction.

1.
$$\cos A = \frac{5}{13}$$

2.
$$\sin A = \frac{12}{13}$$

3.
$$\tan A = \frac{12}{5}$$

4.
$$\cos B = \frac{12}{13}$$

5.
$$\tan B = \frac{5}{12}$$

6.
$$\sin B = \frac{5}{3}$$

7. The sides of right $\triangle ABC$ have lengths 3 ft, 4 ft, and 5 ft. What could be the cosine of $\angle B$?

For #8 and 9, round your answers to the nearest tenth.

8.

$$x = 8.2$$

$$x \cdot \cos 3l = \frac{7}{4} \cdot x$$

$$x = \frac{8.2}{x}$$

$$y = \frac{4.2}{4.2} \cdot \frac{x \cdot \cos 3l}{\cos 3l} = \frac{7}{\cos 3l}$$

$$x = 8.2$$

$$x = \frac{72.3^{\circ}}{\cos 3l}$$

$$x = 8.2$$

$$\cos x = \frac{7}{23}$$

$$\cos x = \cos^{3} \left(\frac{7}{23}\right)$$

$$\cos x = \cos^{3} \left(\frac{7}{23}\right)$$

$$x = 72.3^{\circ}$$

$$(\cos X) = \frac{7}{23}$$

$$cost(cos x) = cos^{-1}\left(\frac{7}{23}\right)$$

For #10 – 14, draw a picture, label all known quantities, show your equations, and label your answer. Round to the nearest tenth.

10. From a point on the ground 12 feet in front of a building, the angle of elevation to the top of the building is 78°. How tall is the building?

11. A dolly ramp is 54 inches long and rises at an angle of 9 degrees. How high is the ramp off the ground?

12. An air traffic controller looks up at an airplane and measures a 34° angle with the ground. The pilot reports that the plane's altitude is 3200 feet. Find the horizontal distance between the plane and the airport.

13. The Leaning Tower of Pisa leans about 5.5° from vertical. Ella Vator is standing on a ledge 177 feet above the ground when she drops her phone. How far from the base will the phone land?

14. Find the smaller acute angle in a right triangle with side lengths of 7, 24, and 25.

$$\sin X = \frac{7}{25}$$

$$X = \sin^{-1}\left(\frac{7}{25}\right)$$

15. Explain why sine and cosine are always less than 1.

$$Sin O = \frac{opp.}{hyp.}$$

$$Sin O = \frac{opp.}{hyp.}$$
 $cos O = \frac{adj.}{hyp.}$

Since the hypotenuse is in the denominator of both, and it is the longest side, the sin + cos are always 16. For what angle measures is the tangent ratio less than one? D < 450

For what <u>angle measures</u> is the tangent ratio greater than one? $\frac{0 > 45^{\circ}}{}$

Explain.

$$\tan 45 = \frac{x}{x} = 1$$

- For #20 23, round your answers to the nearest tenth.
- **17.** Find AC.

18. Find $m\angle B$.

$$Sin B = 0.5732$$

 $B = Sin^{-1}(0.5732)$
 $B = 35^{\circ}$

19. Find *AB*.

$$c^2 = a^2 + b^2 - 2ab \cdot \cos C$$

 $c^2 = 22.9^2 + 22.3^2 - 2(22.9)(22.3) \cdot \cos(96.7)$

$$\sqrt{C^2} = |1140.86$$
 $|C = 33.8 \text{ ft}|$

C= cost(-0.16)

17 yd

17 yd

9 yd =
$$\alpha$$

$$C^{2} = \alpha^{2} + b^{2} - 2ab^{\circ} \cos C$$

$$17^{2} = 9^{2} + 13^{2} - 2(9)(13) \cdot \cos C$$

$$289 = 81 + 169 - 234 \cos C$$

$$289 = 250 - 234 \cos C$$

$$-250 - 250$$

$$39 = -234 \cdot \cos C$$

$$-234 - 234$$

$$\cos C = -0.16 | C = 99.6$$

Law of Sines:
$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

Law of Cosines: $a^2 = b^2 + c^2 - 2bc \cos A$

 $b^2 = a^2 + c^2 - 2ac \cos B$

 $c^2 = a^2 + b^2 - 2ab \cos C$

